

Article

New Side-On Bound Dinitrogen Complexes of Zirconium Supported by an Arene-Bridged Diamidophosphine Ligand and Their Reactivity with Dihydrogen

Erin A. MacLachlan, Fiona M. Hess, Brian O. Patrick, and Michael D. Fryzuk

J. Am. Chem. Soc., 2007, 129 (35), 10895-10905• DOI: 10.1021/ja073753v • Publication Date (Web): 09 August 2007

Downloaded from http://pubs.acs.org on February 15, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Links to the 7 articles that cite this article, as of the time of this article download
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML

New Side-On Bound Dinitrogen Complexes of Zirconium Supported by an Arene-Bridged Diamidophosphine Ligand and Their Reactivity with Dihydrogen

Erin A. MacLachlan, Fiona M. Hess, Brian O. Patrick, and Michael D. Fryzuk*

Contribution from the Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada, V6T 1Z1

Received May 24, 2007; E-mail: fryzuk@chem.ubc.ca

Abstract: A new dinitrogen complex, deep blue-green {[NPN]*Zr(THF)} $_2(\mu-\eta^2:\eta^2-N_2)$ ([NPN]* = {[N-(2,4,6-1)]} $_2(\mu-\eta^2:\eta^2-N_2)$ ([NPN]* = {[N-(2,4,6-1)]} $_2(\mu-\eta^2:\eta^2-N_2)$ ([NPN]* = {[N-(2,4,6-1)]} $_2(\mu-\eta^2:\eta^2-N_2)$ ([NPN]* = {[N-(2,4,6-1)]} (Me₃C₆H₂)(2-N-5-MeC₆H₃)]₂PPh}), was prepared in high yield by the reduction of [NPN]*ZrCl₂ with 2.2 equiv of KC₈ in THF under N₂. The solid-state molecular structure shows that N₂ is strongly activated (N-N bond length: 1.503(6) Å) and bound side-on to two Zr atoms. Coordinated THF can be readily replaced by adding pyridine (py) or PMe₂R (R = Me, Ph) to the complex to obtain {[NPN]*Zr(py)}(μ - η ²: η ²-N₂) or {[NPN]-*Zr(PMe₂R) $\{\mu - \eta^2: \eta^2 - N_2\}$ {Zr[NPN]*} in high yield. X-ray diffraction experiments show that the N₂ moiety is strongly activated and remains side-on bound to Zr for the py and PMe₂Ph adducts; interestingly, only one PMe₂Ph coordinates to the Zr_2N_2 unit. {[NPN]* $Zr(PMe_2R)$ }(μ - η^2 : η^2 - N_2){ $Zr[NPN]^*$ } reacts slowly with H₂ to provide {[NPN]*Zr(PMe₂R)}(μ -H)(μ - η ²: η ²-N₂H){Zr[NPN]*}, as determined by isotopic labeling, and multinuclear NMR spectroscopy. The THF adduct does not react with H₂ even after an extended period, whereas the pyridine adduct does undergo a reaction with H_2 , but to a mixture of products.

Introduction

The reaction of the molecular forms of nitrogen and hydrogen over activated iron or ruthenium heterogeneous catalysts to form ammonia is arguably one of the most important industrial processes practiced worldwide.1 Nowadays known as the Haber-Bosch process, millions of tons of NH₃ are generated annually by this thermodynamically favorable, but kinetically sluggish, reaction and used further to generate fertilizers, explosives, and other commodity materials. The details of the interaction of N2, H2, and NH3 over these heterogeneous catalysts are complicated by surface restructuring, formation of subnitrides, promoter effects, and the importance of defects.² Nevertheless, progress in the discovery of new catalyst systems, particularly metal alloys, does show promise.³

It is remarkable that no one has discovered a homogeneous catalyst that can produce ammonia from $N_2 \mbox{ and } H_2 \mbox{ in analogy }$ to the Haber-Bosch process. Part of the explanation for this observation no doubt lies in the extreme inertness of molecular nitrogen. In fact, until recently, the outcome of the reaction of soluble metal-dinitrogen complexes with H₂ was typically loss of coordinated N₂ and the formation of a dihydrogen metal species or a hydride derivative.⁴ In addition, unlike other small molecules, fundamental transformations of coordinated N₂ have not been well established.⁵

(4) (a) Fryzuk, M. D.; Johnson, S. A. Coord. Chem. Rev. 2000, 200–202, 379. (b) Shaver, M. P.; Fryzuk, M. D. Adv. Synth. Catal. 2003, 345, 1061.
(5) Fryzuk, M. D. Chem. Rec. 2003, 3, 2.

In 1997, we reported⁶ the first ever formation of N-H bonds by the addition of H₂ to a dinitrogen complex. The reaction of $([P_2N_2]Zr)_2(\mu - \eta^2: \eta^2 - N_2)$ (where $[P_2N_2]$ is $[PhP(CH_2SiMe_2 - \eta^2: \eta^2 - N_2)]$ NSiMe₂CH₂)₂PPh]) with dihydrogen produces ([P₂N₂]Zr)₂(µ- η^2 : η^2 -N₂H)(μ -H) as shown in eq 1.

Although initial theoretical calculations suggested⁷ that an additional equivalent of H₂ could be activated by this system to generate the corresponding diazenido-dihydride, ([P2N2]Zr)2-

⁽¹⁾ Jennings, J. R., Ed. Catalytic Ammonia Synthesis; Plenum: New York, 1991.

⁽²⁾ Schlögl, R. Angew. Chem., Int. Ed. 2003, 42, 2004. (3) Jacobsen, C. J. H. Chem. Commun. 2000, 1057.

⁽⁶⁾ Fryzuk, M. D.; Love, J. B.; Rettig, S. J.; Young, V. G. Science 1997, 275, 1445.

⁽⁷⁾ Basch, H.; Musaev, D. G.; Morokuma, K.; Fryzuk, M. D.; Love, J. B.; Seidel, W. W.; Albinati, A.; Koetzle, T. F.; Klooster, W. T.; Mason, S. A.; Eckert, J. J. Am. Chem. Soc. **1999**, *121*, 523.

 $(\mu - \eta^2 : \eta^2 - N_2 H_2)(\mu - H)_2$, we were never able to detect this process in the laboratory.⁸ However, it has been recently reported⁹ that a bis(tetramethylcyclopentadienyl) zirconium dinitrogen complex $[(\eta^5-C_5Me_4H)_2Zr]_2(\mu-\eta^2:\eta^2-N_2)$ does react with 2 equiv of H₂ to generate the diazenido-dihydride species $[(\eta^5-C_5Me_4H)_2 ZrH]_2(\mu-\eta^2:\eta^2-N_2H_2)$. In these two aforementioned examples alone, one can see how important the ancillary ligands are to changing the outcome of the reaction, in that the macrocyclic diamidodiphosphine donor set allows activation of just one H₂ molecule, whereas the tetramethylcyclopentadienyl ligands promote reaction with 2 equiv of H₂. Even more remarkable are the subtle differences in substitution of the cyclopentadienyl ligand and their outcomes.¹⁰ For example, use of the pentamethylcyclopentadienyl ligand coordinated to zirconium results in a different binding mode for N₂, that is, $[(\eta^5-C_5Me_5)_2ZrN_2]_2$ - $(\mu$ -N₂), and displacement of dinitrogen upon reaction with H₂ to form $(\eta^5-C_5Me_5)_2ZrH_2$.¹¹ Other substitution patterns on the cyclopentadienyl unit also can lead to hydrogen activation. Clearly, trying to anticipate what systems might be amenable to both N₂ and H₂ activation is challenging with the rather small set of known dinitrogen complexes that react with dihydrogen to form N-H bonds.

Our goal in the area of dinitrogen activation has been to expand the known reactivity patterns of complexes that contain coordinated N₂. By focusing on those reactions that result in new nitrogen—hydrogen,^{6,7} nitrogen—carbon,¹² and nitrogen heteroatom bonds,¹³ we hope to develop individual transformations that potentially can be combined into catalytic processes that result in the conversion of N₂ to higher-value nitrogencontaining materials. In this paper we disclose the synthesis of a series of new, dinuclear dinitrogen complexes of zirconium that contain side-on bound N₂. In addition, we also report the results of the reaction of these complexes with dihydrogen.

Results and Discussion

Synthesis of {[NPN]*Zr(THF)}₂(μ - η ²: η ²-N₂) (1). We have previously reported the synthesis of the diamidophosphine ligand [NPN]* (where [NPN]* is {[*N*-(2,4,6-Me₃C₆H₂)(2-N-5-MeC₆H₃)]₂PPh}), which incorporates substituted *o*-phenylene linkages between the phosphine and amido donors and the resulting coordination complex [NPN]*ZrCl₂.¹⁴ These *o*-phenylene linkers were installed in this particular ligand design to overcome the lability of the N–Si bond and minimize the flexibility of the backbone in the earlier reported diamidophosphine donor set [NPN] (where [NPN] is [PhP(CH₂SiMe₂-

- (10) Bernskoetter, W. H.; Lobovsky, E.; Chirik, P. J. J. Am. Chem. Soc. 2005, 127, 14051.
- (11) (a) Manriquez, J. M.; Sanner, R. D.; Marsh, R. E.; Bercaw, J. E. J. Am. Chem. Soc. **1976**, 98, 3042. (b) Manriquez, J. M.; Bercaw, J. E. J. Am. Chem. Soc. **1974**, 96, 6229. (c) Manriquez, J. M.; McAlister, D. R.; Sanner, R. D.; Bercaw, J. E. J. Am. Chem. Soc. **1978**, 100, 2716.
- (12) Morello, L.; Love, J. B.; Patrick, B. O.; Fryzuk, M. D. J. Am. Chem. Soc. 2004, 126, 9481.
- (13) (a) MacKay, B. A.; Johnson, S. A.; Patrick, B. O.; Fryzuk, M. D. Can. J. Chem. 2005, 83, 315. (b) Fryzuk, M. D.; MacKay, B. A.; Johnson, S. A.; Patrick, B. O. Angew. Chem., Int. Ed. 2002, 41, 3709. (c) Fryzuk, M. D.; MacKay, B. A.; Patrick, B. O. J. Am. Chem. Soc. 2003, 125, 3234. (d) MacKay, B. A.; Patrick, B. O.; Fryzuk, M. D. Organometallics 2005, 24, 3836. (e) MacKay, B. A.; Munha, R. F.; Fryzuk, M. D. J. Am. Chem. Soc. 2006, 128, 9472.
- (14) MacLachlan, E. A.; Fryzuk, M. D. Organometallics 2005, 24, 1112.

NPh)₂]);^{13,15} the comparison of generic metal coordination environments is shown in Chart 1.

The reduction of [NPN]*ZrCl₂ by 2.2 equiv of KC₈ in THF under 4 atm of N₂ provides deep blue-green {[NPN]*Zr(THF)}₂- $(\mu-\eta^2:\eta^2-N_2)$ (1) in 79% yield, as shown in eq 2.

Dinitrogen complex 1 decomposes to unknown products when powdered or crystalline samples are stored under vacuum overnight, or under N_2 at room temperature for several days; crystalline samples are dried under vacuum only briefly (15 min) prior to analysis. In solution under N_2 , 1 is stable for extended periods although it is very sensitive to air and moisture.

An ORTEP representation of the solid-state molecular structure of 1 as determined by single-crystal X-ray diffraction is shown in Figure 1, along with selected bond lengths and angles. The dinuclear complex features two coordinated THF molecules, along with facially coordinated [NPN]* ligands. The dinitrogen moiety bridges the two Zr atoms side-on, and there is a slight butterfly distortion to the Zr_2N_2 fragment: the angle between the two ZrN₂ planes is 166°. The N-N bond length is 1.503(6) Å, which corresponds to reduction to N_2^{4-} , or hydrazido(4-). The Zr-N bond lengths to N2 are slightly different: Zr1-N3 is 2.023(3) Å, and Zr1-N3' is 2.089(3) Å. The zirconium amido bond distances, Zr-N1 and Zr-N2, are 2.184(3) and 2.224(3) Å, respectively, and are similar to those found in the starting dichloride [NPN]*ZrCl₂. The N-N bond length in **1** is identical to that of $\{[NPN]Zr(THF)\}_2(\mu-\eta^2:\eta^2-\eta^2)$ N₂) (1.503(3) Å)¹⁵ but shorter than the N–N bond in {[PNP]- $ZrCl_{2}(\mu-\eta^{2}:\eta^{2}-N_{2})$ (1.548(7) Å), the longest intact N–N bond observed for a metal complex.¹⁶ (Cp''_2Zr)₂(μ - η^2 : η^2 -N₂) (Cp''= 1,3-(SiMe₃)₂- η^{5} -C₅H₃) has a similar N–N bond length to 1,

⁽⁸⁾ Yates, B. F.; Basch, H.; Musaev, D. G.; Morokuma, K. J. Chem. Theory Comput. 2006, 2, 1298.

^{(9) (}a) Pool, J. A.; Lobkovsky, E.; Chirik, P. J. *Nature* **2004**, *427*, 527. (b) An analogous hafnium complex shows similar reactivity, see: Bernskoetter, W. H.; Olmos, A. V.; Lobkovsky, E.; Chirik, P. J. *Organometallics* **2006**, *25*, 1021.

⁽¹⁵⁾ Morello, L.; Yu, P.; Carmichael, C. D.; Patrick, B. O.; Fryzuk, M. D. J. Am. Chem. Soc. 2005, 127, 12796.

 ⁽a) Fryzuk, M. D.; Haddad, T. S.; Rettig, S. J. J. Am. Chem. Soc. 1990, 112, 8185. (b) Fryzuk, M. D.; Haddad, T. S.; Mylvaganam, M.; McConville, D. H.; Rettig, S. J. J. Am. Chem. Soc. 1993, 115, 2782 ([PNP] = N(SiMe₂-CH₂PPrⁱ₂)₂).

Figure 1. Solid-state molecular structure of 1 (ellipsoids at 50% probability). Carbon atoms of mesityl substituents (except C_{ipso}) and hydrogen atoms have been omitted for clarity. Selected bond distances (Å) and bond angles (deg): Zr1–Pl 2.6777(10), Zr1–Nl 2.184(3), Zr1–N2 2.224(3), Zr1–O1 2.371(2), Zr1–N3 2.023(3), Zr1–N3' 2.089(3), N3–N3' 1.503(6), Pl–Zr1–Nl 71.84(8), Pl–Zr1–N2 73.42(8), N3–Zr1–N3' 42.85(15), Zr1–N3'–Zr1' 135.02(15), O1–Zr1–Pl 154.14(7), Pl–Zr–N3 82.00(8).

within error, at 1.47(3) Å.¹⁷ Other side-on bound Zr–N₂ complexes contain somewhat shorter N–N bonds: ({[P₂N₂]Zr}₂- $(\mu-\eta^2:\eta^2-N_2)$ (1.43(1) Å),⁶ [$(\eta^5-C_5Me_4H)_2Zr$]₂ $(\mu-\eta^2:\eta^2-N_2)$ (1.377(3) Å),^{9a} and (*rac*-BpZr)₂ $(\mu-\eta^2:\eta^2-N_2)$ (1.241(3) Å).¹⁸ In comparison to the closely related derivative,{[NPN]Zr(THF)}₂- $(\mu-\eta^2:\eta^2-N_2)$, the Zr–P bond lengths for **1** are quite similar (2.6685(5) and 2.6777(10) Å, respectively); however, the THF molecules are much more tightly bound in {[NPN]Zr(THF)}₂- $(\mu-\eta^2:\eta^2-N_2)$ as compared to **1** as evidenced by the longer Zr–O bond distance of 2.371(2) Å in **1** as compared to 2.305(1) Å found in the former derivative. It is likely that the neutral THF donor in **1** experiences a larger steric repulsion from the bulkier N-mesityl groups as compared to the N-phenyl groups found in {[NPN]Zr(THF)}₂ $(\mu-\eta^2:\eta^2-N_2)$.

There is a singlet at δ 5.0 in the ³¹P{¹H} NMR spectrum of 1 in THF- d_8 indicating that both phosphines across the $Zr_2(\mu$ - $\eta^2:\eta^2-N_2$) unit are equivalent. The ¹H NMR spectrum shows four singlets between δ 2.2 and 1.7 due to the four distinct ArCH₃ groups of the linkers and the N-mesityl groups (as is observed in ¹H NMR spectra of [NPN]*ZrCl₂, rotation about the C_{ipso-NMes} bond is restricted at room temperature on the NMR time scale).¹⁴ Resonances attributable to aromatic protons and to coordinated THF are also evident. Complex 1 is C_2 symmetric in the solid state, but C_{2h} symmetric in solution, with the mirror plane in the solution structure containing the Zr₂N₂ core that is butterfly distorted in the solid state. A fluxional process that flips N₂ from one side of the Zr-Zr axis to the other may be responsible for the higher symmetry of 1 in THF d_8 solution on the NMR time scale, or more simply the structure in solution may have a rigid planar Zr₂N₂ core.

 $\ensuremath{\textit{Table 1.}}$ UV–Vis Absorption Maxima of Some Group 4 N_2 Complexes in Toluene

N ₂ complex	λ_{\max} (nm)	$\epsilon \ (\times 10^3 \mathrm{L \ mol^{-1} \ cm^{-1}})$
1	652, 358	6.1, 10
2	736, 401, 366	6.1, 6.6, 10
4	699, 363	9.7, 11
$([P_2N_2]Zr)_2(\mu - \eta^2: \eta^2 - N_2)^a$	670, 455, 390	С
$[(rac-Bp)Zr]_2(\mu-\eta^2:\eta^2-N_2)^b$	612, 392	С
$[(\eta^{5}-C_{5}Me_{4}H)_{2}Zr]_{2}(\mu-\eta^{2}:\eta^{2}-N_{2})^{d}$	648, 351	c, 3.7
$[(\eta^5 - C_5 Me_4 H)_2 Hf]_2 (\mu - \eta^2 : \eta^2 - N_2)^e$	886, 553	6.5, 0.38

^{*a*} Ref 19. ^{*b*} (*rac*-Bp = Me₂Si(-2-Me₃Si-4-^{*t*}Bu-C₅H₂)₂]²⁻) ref 18. ^{*c*} Not reported. ^{*d*} Ref 10. ^{*e*} Ref 9b.

The UV-vis absorption spectrum of **1** in toluene consists of two absorptions at 652 nm ($\epsilon = 6.1 \times 10^3 \text{ L} \text{ mol}^{-1} \text{ cm}^{-1}$) and 358 nm ($\epsilon = 1.0 \times 10^4 \text{ L} \text{ mol}^{-1} \text{ cm}^{-1}$). It should be noted that ϵ values are approximate because dilute solutions of **1** become less intensely colored over several hours under N₂ in a Teflonsealed cuvette, likely due to reaction with trace O₂ and H₂O. By analogy with the UV-vis absorption spectrum of ([P₂N₂]-Zr)₂(μ - η ²: η ²-N₂),¹⁹ the two maxima are tentatively assigned to charge-transfer (CT) transitions from the electron-rich N₂⁴⁻ unit to empty d orbitals on Zr(IV). The UV-vis absorption spectrum of **1** is similar to other group 4 dinitrogen complexes (Table 1).

When [NPN]*ZrCl₂ is reduced with KC₈ in the absence of N₂, blue-green 1 does not form, and instead, the reaction mixture turns brown. Several species are present in the mixture: singlets at δ -14.6 and -15.4 are observed by ³¹P{¹H} NMR spectroscopy due to the major diamagnetic P-containing products, and singlets due to minor components are also apparent. The major products could not be separated from each other, and characterization of the mixture by ¹H NMR spectroscopy and mass spectrometry did not aid in identifying these compounds. Reduction of early transition-metal halide complexes in the absence of N₂ activation can lead to a variety of side reactions including C-H activation of toluene to yield an η^n benzyl complex,²⁰ ancillary ligand activation,²¹ or formation of a reduced complex that does not contain N2 (e.g., mixtures of ZrCl₄ and PEt₃ react with sodium amalgam to give [ZrCl₃- $(PEt_3)]_2).^{22}$

When [NPN]*ZrCl₂ is reduced under ¹⁵N₂, the nitrogen-15labeled isotopologue **1**-¹⁵N₂ is obtained. In the ³¹P{¹H} NMR spectrum of the labeled complex, one observes an apparent doublet (²*J*_{PN} = 6.7 Hz) at δ 5.0; a doublet is also present in the ¹⁵N{¹H} NMR spectrum of **1**-¹⁵N₂ at δ 116.6 (relative to MeNO₂ at δ 0). This can be rationalized if one assumes that the ¹⁵N and ³¹P nuclei in **1**-¹⁵N₂ comprise an AA'XX' spin system, with one coupling constant, ²*J*_{PN}, dominating the pattern. Thus, it appears that only one ¹⁵N nucleus couples to one ³¹P nucleus. Addition of ¹⁵N₂ to the unlabeled dinitrogen complex **1** does not result in the incorporation of labeled N₂.

Synthesis of the Pyridine Adduct {[NPN]*Zr(py)}₂(μ - η ²: η ²-N₂), 2. The addition of pyridine (py) to a blue-green C₆H₆ solution of 1 results in an immediate color change to dark forest

⁽¹⁹⁾ Studt, F.; Morello, L.; Lehnert, N.; Fryzuk, M. D.; Tuczek, F. Chem. Eur. J. 2003, 9, 520.

 ^{(20) (}a) Bartmann, E. J. Organomet. Chem. 1985, 284, 149. (b) Evans, W. J.; Chamberlain, L. R.; Ulibarri, T. A.; Ziller, J. W. J. Am. Chem. Soc. 1988, 110, 6423.

⁽¹⁷⁾ Pool, J. A.; Lobkovsky, E.; Chirik, P. J. J. Am. Chem. Soc. 2003, 125, 2241.

⁽¹⁸⁾ Chirik, P. J.; Henling, L. M.; Bercaw, J. E. Organometallics 2001, 20, 534.

⁽²¹⁾ Fryzuk, M. D.; Kozak, C. M.; Mehrkhodavandi, P.; Morello, L.; Patrick, B. O.; Rettig, S. J. J. Am. Chem. Soc. 2002, 124, 516.
(22) Wengrovius, J. H.; Schrock, R. R.; Day, C. S. Inorg. Chem. 1981, 20,

⁽²²⁾ Wengrovius, J. H.; Schrock, R. R.; Day, C. S. Inorg. Chem. 1981, 20, 1844.

Figure 2. Solid-state molecular structure of 2 (ellipsoids at 50% probability). Carbon atoms of the mesityl substituents (except C_{ipso}) and hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and angles (deg): Zr1–P1 2.6699(12), Zr1–N1 2.203(4), Zr1–N2 2.166(4), Zr1–N5 2.002(4), Zr1–N6 2.092(4), Zr1–N7 2.448(4), Zr2–P2 2.6725(12), Zr2–N3 2.172(4), Zr2–N4 2.218(4), Zr2–N5 2.097(4), Zr2–N6 2.011(4), Zr2–N8 2.441(4), N5–N6 1.481(5), N5–Zr1–N6 42.33(14), N6–Zr2–N5 42.19(14), P1–Zr1–N7 156.80(9), N1–Zr1–N2 109.51(14), N7–Zr1–N5 119.68(13).

green (eq 3) to generate {[NPN]*Zr(py)} $_{2}(\mu - \eta^{2}:\eta^{2}-N_{2})$, **2**, which is isolated in high yield as a dark-green powder upon workup. Unlike the THF adduct **1**, complex **2** is stable to vacuum in the solid state and can be stored under N₂ for weeks.

An ORTEP representation of the solid-state molecular structure of **2** is shown in Figure 2, along with selected bond lengths and angles. The dinuclear structure is similar to that observed for **1**. The N–N bond length is 1.481(5) Å, about the same as that observed for **1**, within error. Also similar to **1**, the N–N bond is not exactly perpendicular to the Zr–Zr axis: the Zr1–N5 and Zr2–N6 bonds average to 2.00 Å, and the Zr1–N6 and Zr2–N5 bonds average to 2.09 Å. One pyridine is coordinated to each Zr, and the Zr1–N7 and Zr2–N8 bond lengths are the same within error at about 2.44 Å and lie within the expected range. There is also a butterfly distortion in the Zr₂N₂ core: the two ZrN₂ planes meet at a 168° angle.

Similar to 1, there is a singlet in the ${}^{31}P{}^{1}H$ NMR spectrum of 2 in C₆D₆ at δ 6.0. The ¹H NMR spectrum is consistent with the C_{2h} symmetric structure proposed, although two of the expected four ArCH₃ singlets appear to overlap (the singlet at δ 2.03 integrates to 24H). {[NPN]*Zr(py-d_5)}₂(μ - η ²: η ²-N₂), **2-** d_{10} , can be prepared from 1 and py- d_5 by the same method used to prepare 2 and has been characterized by NMR spectroscopy and electron impact mass spectrometry (EI-MS). ¹⁵N-labeled {[NPN]*Zr(py)}₂(μ - η ²: η ²-¹⁵N₂), **2-¹⁵N₂**, can be prepared from $1^{-15}N_2$ and py in C₆H₆ solution. There is a 1:2:1 triplet at δ 6.0 in the ³¹P{¹H} NMR spectrum of 2-¹⁵N₂ that corresponds to an apparent AX₂ pattern (each ³¹P nucleus couples to two magnetically equivalent ¹⁵N nuclei). A multiplet appears at δ 118.2 in the ¹⁵N{¹H} NMR spectrum that corresponds to an AA'XX' spin system with ${}^{2}J_{NP} = 7$ Hz, ${}^{2}J_{NP'}$ = 3 Hz, and ${}^{1}J_{NN'}$ = 2 Hz. Similar to 1, the UV-vis absorption spectrum of 2 in toluene has two maxima at 736 nm ($\epsilon = 6.1$ \times 10³ L mol⁻¹ cm⁻¹) and 366 nm (ϵ = 1.0 \times 10⁴ L mol⁻¹ cm⁻¹), with a shoulder at 401 nm ($\epsilon = 6.6 \times 10^3 \text{ L mol}^{-1} \text{ cm}^{-1}$).

Synthesis of Phosphine Adducts {[NPN]*Zr(PMe₂R}(μ - $\eta^2:\eta^2-N_2$){Zr[NPN]*}, 3 (R = Me), and 4 (R = Ph). The addition of an excess of PMe₃ to a solution of 1 in Et₂O causes an immediate blue-green to bright green color change. {[NPN]-*Zr(PMe₃)}(μ - $\eta^2:\eta^2-N_2$){Zr[NPN]*}, 3, is isolated as a hexanessoluble bright green powder in quantitative yield upon workup (eq 4). Complex 3 has been observed to decompose in the solid state at room temperature or at -35 °C or upon prolonged exposure to vacuum. Samples of 3 are synthesized immediately before use or are stored for a few days in hexanes solutions with a small amount of added PMe₃ at -35 °C. Although small crystals of 3 can be obtained from toluene/HMDSO in the presence of PMe₃ at -35 °C, they were found to be unsuitable for X-ray analysis. A hexamethyldisiloxane of crystallization was observed by microanalysis and by ¹H NMR spectroscopy.

The ³¹P{¹H} NMR spectrum of **3** at room temperature in C_6D_6 indicates that there are three distinct phosphine environments in this complex: two doublets at δ 5.1 and -33.1 (²J_{PP} = 44 Hz), and a singlet at δ 2.5, each integrating to 1P. These are assigned to the phosphine donor in [NPN]* and the PMe₃

coordinated to one Zr atom (44 Hz coupling is consistent with two-bond P–P coupling between trans-disposed phosphines in an early transition-metal complex^{23,24}), and the singlet is due to [NPN]* coordinated to the other Zr atom, respectively. The ¹H NMR spectrum is also consistent with the C_s symmetric structure proposed above: there are eight ArCH₃ singlets, a doublet at δ 0.27 (²*J*_{PH} = 6 Hz, 9H) attributable to one molecule of coordinated PMe₃, and the expected ArH resonances. The absence of resonances for free or coordinated THF in the ¹H and ¹³C{¹H} NMR spectra also supports the proposed structure.

Since attempts to grow single crystals of **3** were hindered by its high solubility and its thermal lability, PMe₂Ph instead of PMe₃ was used to synthesize an analogous phosphine adduct of the Zr–N₂ complex. The addition of excess PMe₂Ph to a toluene solution of **1** causes an immediate blue-green to bright green color change. Benzene-soluble {[NPN]*Zr(PMe₂Ph)}(μ - $\eta^2:\eta^2-N_2$){Zr[NPN]*}, **4**, is isolated as an emerald green powder in 82% yield upon workup (eq 4). In contrast to **3**, **4** is thermally stable and can be placed under vacuum for several hours without decomposition. Small crystals of **4** can be grown from C₆H₆/ HMDSO at room temperature; the presence of cocrystallized solvent was confirmed by microanalysis and ¹H NMR spectra of **4** acquired in toluene-*d*₈. Single crystals of **4** suitable for X-ray analysis were grown by slow evaporation of a hexanes solution.

The ³¹P{¹H} NMR spectrum of **4** in C₆D₆ is similar to that of **3** at room temperature; there are two doublets at δ 7.3 and -22.5 (²*J*_{PP} = 46 Hz) and a singlet at δ 1.9 assigned to [NPN]* and PMe₂Ph coordinated to one Zr, and [NPN]* coordinated to the second Zr atom, respectively. In the ¹H NMR spectrum there are eight ArCH₃ singlets, a doublet at δ 0.80 (²*J*_{HP} = 6 Hz) corresponding to the coordinated P(CH₃)₂Ph, and peaks in the ArH region consistent with the *C_s* symmetric structure proposed for **4**. There are two peaks in the UV-vis absorption spectrum of **4** in toluene solution at 699 nm (ϵ = 9.7 × 10³ L mol⁻¹ cm⁻¹) and 363 nm (ϵ = 1.1 × 10⁴ L mol⁻¹ cm⁻¹) tentatively assigned to N₂ → Zr CT transitions.

An ORTEP representation of the solid-state molecular structure of **4** is shown in Figure 3, along with selected bond lengths and angles. Zr1 is coordinated to one [NPN]* ligand, and side-on bound N₂; Zr2 is coordinated to one [NPN]* ligand, PMe₂Ph, and side-on bound N₂. At 1.488(2) Å, the N–N bond length compares well to those in **1** and **2**, within error. The Zr–P bond lengths to [NPN]* (Zr1–P1 2.6967(6), Zr2–P2 2.6445(6) Å) are also similar to those of **1** and **2**, but the Zr2–P3 bond length to PMe₂Ph is much longer at 2.9139(6) Å. The Zr2–P3 bond length is comparable to other long Zr–P bonds to tertiary phosphines reported in the literature.²⁵ As with **1** and **2**, there is a butterfly distortion between the two ZrN₂ planes of 165° in the C_1 symmetric solid-state structure. P1 and P2 are staggered across the Zr–Zr axis (P1–Zr1–Zr2–P2 torsion angle is 179.9°), whereas P1 and P3 are nearly eclipsed (P1–

Figure 3. Solid-state molecular structure of **4** (ellipsoids at 50% probability). Carbon atoms of the front mesityl substituents (except C_{ipso}) and the hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and angles (deg): Zr1–P1 2.6967(6), Zr2–P2 2.6445(6), Zr1–N1 2.1370(18), Zr1–N2 2.1689(18), Zr2–N5 2.1818(18), Zr2–N6 2.1747(17), Zr1–N3 2.0450(17), Zr1–N4 2.0315(17), Zr2–N3 2.0371(18), Zr2–N4 2.1153(17), Zr2–P3 2.9139(6), N3–N4 1.488(2), N3–Zr1–N4 42.83-(7), Zr1–N3–Zr2 137.18(9), P2–Zr2–P3 166.605(19), P1–Zr1–N4 94.18(5), P1–Zr1–N3 136.91(5), P1–Zr1–N1 71.28(5), P1–Zr1–N2 75.25(5), N1–Zr1–N3 118.84(7), N1–Zr1–N4 115.84(7).

Zr1–Zr2–P3 torsion angle is 7.8°). Since **4** is C_s symmetric in solution, the Zr₂N₂ core is either planar or there is a fluxional process that allows N₂ to sample both sides of the Zr–Zr axis on the NMR time scale.

The solid-state molecular structure of **4** provides some clue as to why only 1 equiv of PMe₂Ph coordinates to the dimer: the presence of PMe₂Ph on Zr2 causes [NPN]* on Zr1 to adopt a position that effectively blocks the coordination of PMe₂Ph to Zr1. Complex **4** is unique among zirconium-dinitrogen complexes because the coordination environments at each Zr atom are different.

Isotopically labeled **4**-¹⁵N₂ can be prepared from **1**-¹⁵N₂ and PMe₂Ph by the same method used to prepare **4**. The ³¹P{¹H} NMR spectrum of **4**-¹⁵N₂ in C₆D₆ acquired at room temperature is similar to that of **4**, but additional P–N coupling appears when a sample of **4** in toluene-*d*₈ is analyzed at 253 K. There is a doublet of doublets of doublets at δ 7.3 (²*J*_{PP} = 46 Hz, ²*J*_{PN} = 4 Hz, ²*J*_{PN} = 7 Hz), a singlet at δ –1.9, and a doublet of doublets at δ –22.5 (²*J*_{PP} = 46 Hz, ²*J*_{PN} = 7 Hz). It is unclear why the singlet at δ –1.9 is not split by ¹⁵N. There are two AA'XX' multiplets (²*J*_{NN} = 8 Hz, ²*J*_{PN} = 4 Hz, ²*J*_{PN} = 7 Hz) in the ¹⁵N{¹H} NMR spectrum at 253 K at δ 119.0 and 118.0, each integrating to 1N.

Reactivity of the Dinitrogen Complexes with H₂. When a blue-green toluene solution of the THF complex **1** is stirred under 4 atm of H₂ gas for 6 weeks at room temperature, there is no color change, and no new peaks appear in the ³¹P{¹H} or ¹H NMR spectra. In contrast, when a toluene solution of the pyridine derivative **2** is stirred under 4 atm of H₂ for 8 weeks, there is a gradual color change from green to yellow-brown. By ³¹P{¹H} NMR spectroscopy, there is a mixture of products, including [NPN]*H₂. In the ¹H NMR spectrum, no peaks diagnostic of bridging hydride or NNH protons are observed. Unfortunately, the major products could not be separated from each other on the basis of solubility.

⁽²³⁾ Gozum, J. E.; Wilson, J. R.; Girolami, G. S. J. Am. Chem. Soc. 1992, 114,

 ^{(24) (}a) Fryzuk, M. D.; Haddad, T. S.; Rettig, S. J. Organometallics 1989, 8, 1723. (b) Fryzuk, M. D.; Haddad, T. S.; Rettig, S. J. Organometallics 1988, 7, 1224.

^{(25) (}a) Schrock, R. R.; Seidel, S. W.; Schrodi, Y.; Davis, W. M. Organometallics 1999, 18, 428. (b) Fryzuk, M. D.; Duval, P. B.; Mao, S. S. H.; Zaworotko, M. J.; MacGillivray, L. R. J. Am. Chem. Soc. 1999, 121, 2478.
(c) Fryzuk, M. D.; Mao, S. S. H.; Zaworotko, M. J.; MacGillivray, L. R. J. Am. Chem. Soc. 1993, 115, 5336. (d) Cayias, J. Z.; Babaian, E. A.; Hrncir, D. C.; Bott, S. G.; Atwood, J. L. J. Chem. Soc., Dalton Trans. 1986, 2743.

Figure 4. 202 MHz ${}^{31}P{}^{1}H$ NMR spectrum of 5 in toluene- d_8 at 273 K.

When a toluene solution of the PMe₃ derivative **3** is stirred under H₂, the bright green solution becomes yellow over 2–3 weeks, and an orange precipitate forms after 5 weeks. The yellow-orange toluene-soluble product, {[NPN]*Zr(PMe₃)}(μ -H)(μ -NNH){Zr[NPN]*}, **5**, can be prepared in high yield from **3** and PMe₃ in toluene solution under H₂ (1 atm) (eq 5). Complex **5** can also be synthesized from **3** and H₂ without added PMe₃, but an unidentified brown byproduct forms in about 10% yield by this method. Samples of **5** are stable in solution and in the solid state for months under N₂ at -35 °C.

At 298 K, the ³¹P{¹H} NMR spectrum of **5** shows three broad peaks at $\delta \sim 13$, -2.5, and -36, which sharpen at 273 K to two doublets at δ 13.8 and -34.5 (²J_{PP} = 56.7 Hz) and a singlet at δ -2.2 (Figure 4). Because the spectrum is reminiscent of the starting material **3**, a dinuclear structure for **5** is proposed in which one Zr atom is coordinated to [NPN]* (δ -2.2) and the other Zr atom is coordinated to [NPN]* (δ 13.8) and PMe₃ (δ -34.5). The 56.7 Hz P–P coupling constant is typical for a two-bond coupling between trans-disposed phosphines in an early transition-metal complex.^{23,24}

The ¹H NMR spectrum acquired at 298 K shows a triplet (δ 4.83, ²*J*_{HP} = 11 Hz) and a broad singlet (δ 4.78) that each

integrate to 1H and are assigned to a bridging hydride (Zr- μ -*H*-Zr) and a hydrogen atom of bridging NN*H* (Figure 5). The other resonances are somewhat broad at this temperature. At 253 K, the peaks in the ¹H NMR spectrum are sharper, and thirteen singlets are observed at $\delta \sim 2.0$ that are assigned to ArCH₃ groups. Sixteen singlets are expected based on the C_1 symmetry of the product, but six of these singlets overlap and integrate to 6H each. A broad singlet at δ 0.09 is due to coordinated PMe₃, and the peaks due to Zr- μ -*H*-Zr and NN*H* groups appear as an overlapping triplet at δ 4.84 and broad singlet at δ 4.82.

In the ¹H{³¹P} NMR spectrum at 253 K, the resonances assigned to the bridging hydride (Zr- μ -*H*-Zr) and NN*H* appear as two singlets at δ 4.84 and 4.82. Thus, the bridging hydride is a triplet in the ¹H NMR spectrum because it couples to only two inequivalent ³¹P nuclei. It is likely that the Zr- μ -*H*-Zr moiety couples to the ³¹P nuclei of two [NPN]* ligands and not to the loosely bound PMe₃ donor; further support of this is discussed below.

Attempts to generate crystals of the dihydrogen adduct were partially successful. An X-ray crystal structure was obtained of **5**; however, the data for this structure are of poor quality and only the connectivity of the non-hydrogen atoms could be established. What is evident is that there is a much larger butterfly distortion of the Zr_2N_2 unit in **5** consistent with the introduction of a hydrogen atom to one of the nitrogen centers of the bridging N_2 unit and a bridging hydride.

To confirm that the resonances at δ 4.84 and 4.82 originate from H₂ gas, toluene-*d*₈ solutions of **3** have been stored under H₂ or D₂ gas in sealed NMR tubes and monitored for several weeks. Whereas the reaction of **3** with H₂ is complete in 6

Figure 5. Zr- μ -H-Zr and NNH resonances in the 500 MHz ¹H NMR spectrum of **5** in toluene- d_8 at 298 K.

weeks, the reaction with D_2 takes about 3 months, and a mixture of $\{[NPN]^*Zr(PMe_3)\}(\mu-D)(\mu-NND)\{Zr[NPN]^*\}, 5-d_2, and 5$ is produced. In the ¹H NMR spectrum at 253 K, the triplet and singlet resonances at δ 4.84 and 4.82 integrate to about 0.02H each relative to one of the ArCH₃ resonances (set to 3H). Thus, the bridging hydride and NNH protons in 5 originate from H_2 gas. The resonances at δ 4.84 and 4.82 appear in spectra of 5- d_2 because there are trace HD impurities (0.4%) in the D₂; presumably $5-d_1$ is also present in this mixture. Since 3 reacts with H_2 faster than it reacts with D_2 , the formation of 5 in this reaction cannot be prevented. Complex 5- d_2 (along with the d_1 isotopologue) can also be prepared as an orange solid on a larger scale (300 mg) from 3, PMe₃, and D_2 (4 atm). By integration of the resonances at δ 4.84 and 4.82 in the ¹H NMR spectrum in toluene-d₈ acquired at 253 K, 5-d₁ and 5 are present as 10% of the labeled product. A signal attributable to the parent ion, $[5-d_2]^+$, appears in the mass spectrum of the compound.

To determine if the hydrogenation of **3** can be extended to the PMe₂Ph congener **4**, a toluene solution of **4** and PMe₂Ph was stirred under 1 atm of H₂ gas. The green solution turns yellow after 3 weeks at room temperature, and a yellow precipitate forms after 6 weeks. Upon workup, {[NPN]*Zr-(PMe₂Ph)}(μ -H)(μ -NNH){Zr[NPN]*}, **6**, is isolated as a yellow solid in good yield (eq 5).

Similar to 5, the ${}^{31}P{}^{1}H$ NMR spectrum of 6 in toluene- d_8 at 298 K shows three broad singlets at δ 15, -2, and -25. At 253 K, the broad resonances sharpen and a doublet at δ 14.6 $(^{2}J_{\rm PP} = 57.4 \text{ Hz})$, a broad doublet at $\delta - 24.6$, and a broad singlet at δ -2.3 are observed. These signals correspond to [NPN]* and PMe₂Ph coordinated to one Zr, and [NPN]* coordinated to the other Zr, respectively. In the presence of a small amount of PMe_2Ph , the spectra of **6** are more broad and require lower temperatures to decoalesce. In the ¹H NMR spectrum at 233 K, the expected signals due to ArH, ArCH₃, and PMe₂Ph groups in the C_1 symmetric dimer are apparent. In addition, a broad singlet at δ 4.94, and a poorly resolved triplet at δ 4.88, are attributable to NNH and Zr-µ-H-Zr protons, respectively; these chemical shifts are reversed from the PMe₃ adduct 5 (Figure 5). When the downfield ³¹P NMR signals due to the [NPN]* units at δ 14.6 and -2.3 are each selectively decoupled, the triplet at δ 4.88 collapses in turn to a broad doublet; when the ³¹P NMR peak at δ –24.6 due to the coordinated PMe₂Ph is irradiated, the triplet resonance due to the bridging hydride is unaffected. This clearly indicates that only the [NPN]* phosphine donors on each zirconium engage in coupling to the hydride, which in turns supports the bridging mode of bonding.

The formation of a new N–H bond upon hydrogenation of **4** has been confirmed by an isotopic labeling experiment. {[NPN]*Zr(PMe₂Ph)}(μ -H)(μ -¹⁵N¹⁵NH){Zr[NPN]*}, **6**-¹⁵N₂, can be prepared from **4**-¹⁵N₂, PMe₂Ph and H₂ (1 atm) in toluene solution. At 273 K, the ³¹P{¹H} NMR spectrum of **6**-¹⁵N₂ shows the same peaks as that of **6**, but the broad singlet at δ –24.6 is split into a broad doublet. In the ¹H NMR spectrum acquired at 233 K, the ArH, ArCH₃, and PMe₂Ph resonances are analogous to those of **6**, but the peak at δ 4.94 is a doublet (¹*J*_{HN} = 72 Hz), and the peak at δ 4.88 is a broad triplet (²*J*_{HP} = 9.7 Hz). In the ¹H{³¹P} NMR spectrum, the doublet at δ 4.94 is apparent, but the resonance at δ 4.88 is a singlet. The 72 Hz ¹⁵N-¹H

coupling constant is typical for one-bond coupling²⁶ and is similar to that observed for $([P_2N_2]Zr)_2(\mu-H)(\mu^{-15}N^{15}NH)$.⁶ The ¹⁵N{¹H} NMR spectrum at 273 K shows a singlet at δ 143.9 and a doublet at δ 29.8 (² $J_{NP} = 10$ Hz). In the mass spectrum, a peak due to $[M - PMe_2Ph]^+$ is apparent.

 H_2 may add to **3** or **4** by a 1,2-addition mechanism across the Zr-N bond via a four-centered transition state: one N of dinitrogen acts as a nucleophile and Zr acts as an electrophile in this reaction, which is an example of heterolytic H-H activation. A similar mechanism has been invoked for the addition of H₂ to $([P_2N_2]Zr)_2(\mu-\eta^2:\eta^2-N_2)$.⁶ This latter reaction, reported in 1997, was the first example of a N₂ complex reacting with H₂ to yield a new N-H bond. Yellow $([P_2N_2]Zr)_2(\mu-H)$ -(μ -NNH) forms under 1 or 4 atm of H₂, and a broad singlet at δ 5.53 and a multiplet at δ 2.07 appear in the ¹H NMR spectrum. These peaks are due to μ -NNH and μ -H groups, respectively, as determined by isotopic labeling; when the reaction is conducted under D₂ gas, these resonances disappear, and when H₂ reacts with ($[P_2N_2]Zr$)₂(μ -¹⁵N₂), the peak at δ 5.53 is split into a doublet (${}^{1}J_{\text{HN}} = 71.3 \text{ Hz}$). The resonances attributable to the bridging hydride $Zr-\mu$ -H-Zr for **5** and **6** are about 3 ppm downfield compared to the hydride observed for ([P₂N₂]Zr)₂- $(\mu$ -H) $(\mu$ -NNH) but are within the range of known chemical shifts for hydrides bridging two Zr atoms.²⁷

Conclusions

In this article, the synthesis, structure, and reactivity of {[NPN]*Zr(THF)}₂(μ - η^2 : η^2 -N₂) (1) are reported. The coordinated N₂ has been formally reduced to N₂⁴⁻ in the complex and is bound in the bridging side-on mode to two Zr atoms. The substitution of THF for pyridine or PMe_2R (R = Me, Ph) is readily carried out by adding the donor molecule to a solution of 1. Whereas {[NPN]*Zr(py)} $_{2}(\mu-\eta^{2}:\eta^{2}-N_{2})$ (2) is structurally analogous to 1 except for the identity of the donor, in {[NPN]- $Zr(PMe_2R)$ (μ - η^2 : η^2 -N₂) { $Zr[NPN]^*$ } (**3**, R = Me; **4**, R = Ph), only one of the two Zr atoms is coordinated to PMe₂R, even in the presence of excess phosphine. The solid-state molecular structure of 4 shows that PMe₂Ph bound to one Zr atom leads to a rearrangement of [NPN]* on the second Zr atom, effectively blocking the coordination of a second PMe₂Ph. The synthesis of the pyridine and PMe₂R adducts from 1 represents a simple, high-yield method for tuning the coordination environment of the metal in a strongly activated N₂ complex.

Dinitrogen complexes **1**–**4** display different reactivity with H₂ in toluene solution. THF adduct **1** does not react with H₂ at 4 atm pressure over several weeks. While a toluene solution of pyridine adduct **2** changes color when stirred under H₂ for weeks at room temperature, multiple products form that could not be separated or identified. In contrast, a new N–H bond forms when PMe₂R adducts **3** and **4** are stirred under H₂ in toluene; {[NPN]*Zr(PMe₂R)}(μ -H)(μ - η ²: η ²-N₂H){Zr[NPN]*} (R = Me, **5**; R = Ph, **6**) forms in high yield and has been characterized by isotopic labeling, multinuclear NMR spectroscopy, and a solid-state structure of **5**. The lack of reactivity of the THF adduct **1** with H₂ parallels that of the related complex {[NPN]-

⁽²⁶⁾ Binsch, G.; Lambert, J. B.; Roberts, B. W.; Roberts, J. D. J. Am. Chem. Soc. 1964, 86, 5564.

^{(27) (}a) van den Hende, J. R.; Hessen, B.; Meetsma, A.; Teuben, J. H. Organometallics 1990, 9, 537. (b) Weigold, H.; Bell, A. P.; Willing, R. I. J. Organomet. Chem. 1974, 73, C23.

 $Zr(THF)_{2}(\mu-\eta^{2}:\eta^{2}-N_{2})$; it is likely that the strongly bound THF molecules impede the reaction with H₂ in both complexes, and not until an additional soft phosphine donor is present does the 1,2-addition take place. In addition, it could also be that the PR₃ adducts display enhanced reactivity due to the presence of one open site at the uncoordinated Zr center. The latter feature augers well for further reactivity studies, which are currently in progress.

Experimental Section

General Considerations. Unless otherwise stated, all manipulations were performed under an atmosphere of dry, oxygen-free N2 or Ar by means of standard Schlenk or glovebox techniques (Vacuum Atmospheres HE-553-2 glovebox equipped with an MO-40-2H purification system and a -35 °C freezer). Ar and N2 were dried and deoxygenated by passing the gases through a column containing molecular sieves and MnO. Hexanes, toluene, tetrahydrofuran, pentane, benzene, and diethyl ether were purchased anhydrous from Aldrich, sparged with N2, and passed through columns containing activated alumina and Ridox catalyst. Tetrahydrofuran was then stored over purple sodium benzophenone ketyl indicator and degassed by three freeze-pump-thaw cycles. Pyridine was dried over CaH2 and distilled under N2 prior to use. THF-d₈, C₇D₈, and C₆D₆ were dried over Na/K alloy under partial pressure, trap-to-trap distilled, and freeze-pump-thaw degassed three times. ¹H, ³¹P{¹H}, and ¹³C{¹H} NMR spectra were recorded on a Bruker AV-300, Bruker AV-400, or Bruker AMX-500 spectrometer, operating at 300.1, 400.0, and 500.1 MHz for ¹H spectra, respectively. ⁷Li{¹H} NMR spectra were recorded on the AV-400 or AMX-500. Unless otherwise noted, all spectra were recorded at room temperature. ¹H NMR spectra were referenced to residual protons in the deuterated solvent: C_6D_6 (δ 7.16), CDCl₃ (δ 7.24), C_7D_8 (δ 2.09), or THF- d_8 (δ 3.58). ³¹P{¹H} NMR spectra were referenced to external P(OMe)₃ (δ 141.0 with respect to 85% H₃PO₄ at δ 0.0). ¹³C{¹H} NMR spectra are referenced as indicated: C_6D_6 (δ 128.0), CDCl₃ (δ 77.23), or THF- d_8 (δ 67.4). ¹⁵N{¹H} NMR spectra were recorded on a Bruker AV-400 direct detect spectrometer operating at 400.1 MHz for ¹H NMR spectra and were referenced externally to MeNO₂ at δ 0. Chemical shifts (δ) listed are in ppm, and absolute values of the coupling constants are in Hz. NMR simulations were performed using the program MestReC. UV-vis spectra were recorded on a Varian/Cary 5000 UV-vis spectrometer using a 1 cm Teflon-sealed cuvette. Mass spectrometry (EI-MS) and microanalyses (C, H, N) were performed at the Department of Chemistry at the University of British Columbia. Flasks sealed under N2 gas at liquid-nitrogen temperature reach a pressure of 4 atm at room temperature and should be thawed completely behind a blast shield and handled with care. 15N-labeled complexes were isolated and handled under unlabeled N₂. [NPN]*ZrCl₂¹² and potassium graphite (KC₈) were prepared according to literature methods.²⁸ Trimethylphosphine and dimethylphenylphosphine were purchased from Strem Chemical Ltd. and used without further purification. ¹⁵N₂ gas (isotopic purity 98+%, 1 or 2 L) was purchased from Cambridge Isotopes Ltd. in a small carbon steel lecture bottle and used as received. Hydrogen was obtained from Praxair, and deuterium gas (HD 0.4%) was purchased from Cambridge Isotopes Ltd, and both were used as received.

{[**NPN**]***Zr**(**THF**)}₂(μ - η ²: η ²-**N**₂) (1). THF (10 mL) was vacuumtransferred onto an intimate mixture of [NPN]*ZrCl₂ (1.00 g, 1.40 mmol) and KC₈ (0.414 g, 3.07 mmol) in a 400 mL Teflon-sealed thickwalled bomb at 77 K. The flask was filled with N₂ gas at this temperature, sealed, and warmed slowly to room temperature in a liquid-N₂/EtOH slurry behind a blast shield. As soon as the mixture had melted, it was stirred vigorously. The flask was periodically inverted to coat the walls of the flask with the concentrated reaction mixture. The solution turned purple after 2 h, and bright blue-green after 5 h, and was stirred overnight. The pressure was vented, and the suspension was diluted with THF (10 mL) and filtered through Celite in the glovebox. The Celite was washed with additional THF ($\sim 10-20$ mL). The filtrate was concentrated to a volume of ~10 mL, layered with pentane (30-50 mL), and chilled to -35 °C. Black crystals formed over several days that were collected on a frit, washed with pentane (5 mL), and dried under vacuum for 15 min (0.802 g, 0.548 mmol, 79%). Storing crystals of 1 under vacuum overnight gave a white powder that contained benzene-soluble and -insoluble fractions. Crystals of 1 suitable for X-ray analysis were grown in a large Teflon-sealed bomb by vapor diffusion of hexanes into a concentrated benzene/THF solution of the compound in an NMR tube over 3 weeks. Crystals of 1 grown from THF/hexanes at -35 °C contain 2 equiv of cocrystallized THF as determined by elemental analysis and confirmed by ¹H NMR spectroscopy. ¹H NMR (THF- d_8 , 500 MHz): $\delta = 7.42$ (t, 4H, 7.5 Hz), 7.22 (m, 6H), 7.08 (d, 4H, 7.5 Hz), 6.82 (s, 4H), 6.73 (s, 4H), 6.64 (d, 4H, 8.5 Hz), and 5.43 (dd, 4H, $J_{\rm HH} = 8$ Hz, $J_{\rm HP} = 6$ Hz) (ArH), 3.54 (bs, THF), 2.18 (s, 12H), 2.07 (s, 12H), 1.94 (s, 12H), and 1.74 (s, 12H) (ArCH₃), 1.69 (bs, THF). ³¹P{¹H} NMR (THF- d_8 , 202 MHz): δ = 5.0 (s). ¹³C{¹H} NMR (THF- d_8 , 126 MHz): $\delta = 163.1$ (d, 11 Hz), 144.7, 137.9, 136.7, 136.4, 134.9, 134.1, 133.8, 130.0, 129.9, 128.9, 128.8, 125.1, 118.2, 117.9, and 113.7 (d, 10 Hz) (ArC), 68.2, and 26.4 (THF), 20.9, 20.4, 20.3, and 19.2 (ArCH₃). EI-MS (m/z): 1432 (1, [M $(-N_2)^+$, 1320 (2, $[M - 2THF]^+$), 541 (100, $\{[NPN]^*H_2 - Me\}^+$). Anal. Calcd for 1.2THF, C₉₂H₁₁₀N₆O₄P₂Zr₂: C, 68.71; H, 6.89; N, 5.23. Found: C, 68.34; H, 7.24; N, 4.90. UV-vis (toluene) λ_{max} (ϵ) = 358 (1.0×10^4) , 652 (6.1 × 10³) nm (L mol⁻¹ cm⁻¹).

Reduction of [NPN]*ZrCl₂ in the absence of N₂. Using the procedure outlined above, THF (10 mL) was transferred to a mixture of [NPN]*ZrCl₂ (0.350 g, 0.488 mmol) and KC₈ (0.145 g, 1.07 mmol) at 77 K, and the flask was evacuated and sealed. The reaction mixture was a brown suspension while warming to room temperature. The mixture was stirred overnight, the pressure was vented, and an aliquot of the reaction mixture was analyzed by ³¹P{¹H} NMR spectroscopy. The reaction mixture was filtered, and the filtrate was concentrated and layered with pentane, but no crystals were obtained. After 2 days, the brown solution was taken to dryness to obtain a brown powder. ³¹P{¹H} NMR spectroscopy indicated the reaction mixture and solid obtained upon workup had the same composition. ³¹P{¹H} NMR (C₆D₆, 202 MHz): $\delta = 20.3$ (s, ~5%), 17.9 (s, ~5%), -14.6 (s, ~30%), -15.4 (s, ~40%), -31.4 (s, ~20%).

{[NPN]*Zr(THF)}₂(μ - η ²: η ²-¹⁵N₂) (1-¹⁵N₂). Complex 1-¹⁵N₂ (0.254 g, 0.173 mmol, 83%) was prepared from [NPN]*ZrCl₂ (0.321 g, 0.448 mmol) and KC8 (0.133 g, 0.985 mmol) in a 200 mL Teflon-sealed bomb by the same general method used to prepare 1. After vacuumtransferring THF (5 mL) to the flask at 77 K, the sealed, frozen flask was connected to a lecture bottle of ${}^{15}N_2$ gas (1 L, 1–2 atm pressure) via a small transfer bridge. The apparatus was evacuated and backfilled three times, the flask containing the frozen solution was opened, and the entire apparatus was evacuated and then closed to the Schlenk line. The lecture bottle was slowly opened in the closed system. The flask was warmed to room temperature in a liquid-N2/EtOH slurry (4 atm N₂) behind a blast shield with vigorous stirring. The ¹H NMR spectrum was the same as for 1. ³¹P{¹H} NMR (THF- d_8 , 162 MHz): $\delta = 5.0$ (d, ${}^{2}J_{PN} = 6.7$ Hz). ${}^{15}N{}^{1}H}$ NMR (THF- d_{8} , 40 MHz): $\delta = 116.6$ (d, ${}^{2}J_{\text{PN}} = 6.7$ Hz). EI-MS (*m*/*z*): 1432 (8, [M - N₂]⁺), 1322 (6, [M - $2THF]^+$, 541 (100, {[NPN]*H₂ - Me}⁺).

{[**NPN**]***Zr**(**py**)}₂(μ - η^2 : η^2 -**N**₂) (2). To a stirred blue-green suspension of **1** (0.815 g, 0.557 mmol) in C₆H₆ (15 mL) was added pyridine (0.98 g, 1.0 mL, 12 mmol) dropwise. The solution turned dark evergreen instantly. After 15 min the reaction mixture was taken to dryness to obtain a dark-green powder that was suspended in hexanes, collected on a frit, rinsed with hexanes (5 mL), and dried (0.723 g, 0.489 mmol, 88%). Large black crystals suitable for X-ray analysis were grown by slow evaporation of a benzene solution of the compound in an NMR tube. ¹H NMR (C₆D₆, 500 MHz): δ = 7.55 (bm, 4H), 7.45 (d, 4H, 6

 ^{(28) (}a) Lalancette, J. M.; Rollin, G.; Dumas, P. Can. J. Chem. 1972, 50, 3058.
 (b) Bergbreiter, D. E.; Killough, J. M. J. Am. Chem. Soc. 1978, 100, 2126.

Hz), 7.12 (m, 4H, py), 6.84 (d, 4H, 8 Hz), 6.77 (s, 4H), 6.65 (bs, 6H), 6.55 (t, 2H, 8 Hz, py), and 6.47 (s, 4H) (ArH), 6.00 (m, 8H, ArH and py), 2.23 (s, 12H), 2.11 (s, 12H), and 2.03 (s, 24H) (ArCH₃). ³¹P{¹H} NMR (C₆D₆, 202 MHz): $\delta = 6.0$ (s). ¹³C{¹H} NMR (C₆D₆, 126 MHz): $\delta = 162.7$ (d, 33 Hz), 149.9, 143.9, 137.3, 136.8, 136.0, 134.6, 133.7, 133.2, 133.0, 129.6, 129.5, 128.3, 127.6 (d, 8 Hz), 127.5, 125.6, 125.1, 121.9, and 114.0 (d, 10 Hz) (ArC), 20.8, 20.4, 20.1, and 19.3 (ArCH₃). EI-MS (*m*/*z*): 1399 (30, [M – py]⁺), 1320 (30, [M – 2py]⁺), 541 (100, {[NPN]*H₂ – Me}⁺). Anal. Calcd for C₈₆H₈₈N₈P₂Zr₂: C, 69.88; H, 6.00; N, 7.58. Found: C, 70.20; H, 6.31; N, 7.20. UV–vis (toluene) λ_{max} (ϵ) = 366 (1.0 × 10⁴), 401 (6.6 × 10³), 736 (6.1 × 10³) nm (L mol⁻¹ cm⁻¹).

{[**NPN**]***Zr**(**py**-*d*₅)}₂(μ - η ²: η ²-**N**₂) (2-*d*₁₀). Using the procedure outlined above, pyridine-*d*₅ (0.53 g, 0.50 mL, 6.3 mmol) was added to **1** (0.290 g, 0.198 mmol) in C₆H₆ (5 mL). A dark-green powder (0.270 g, 0.181 mmol, 91%) was isolated upon workup. The ³¹P{¹H} and ¹³C-{¹H} NMR spectra are the same as those of **2**. ¹H NMR (C₆D₆, 500 MHz): δ = 7.55 (m, 4H), 7.45 (d, 4H, 7 Hz), 6.84 (d, 4H, 8 Hz), 6.77 (s, 4H), 6.65 (bs, 6H), 6.46 (s, 4H), and 6.01 (dd, 4H, *J*_{HP} = 6 Hz, *J*_{HH} = 8 Hz) (ArH), 2.23 (s, 12H), 2.11 (s, 12H), and 2.03 (s, 24H) (ArCH₃). EI-MS (*m*/*z*): 1404 (10, [M - (py-*d*₅)]⁺), 1320 (15, [M - 2(py-*d*₅)]⁺), 541 (100, {[NPN]*H₂ - Me}⁺).

{[**NPN**]***Zr**(**py**)}₂(μ - η^2 : η^2 -¹⁵**N**₂) (2-¹⁵**N**₂). Using the procedure outlined above, pyridine (0.24 g, 0.25 mL, 3.0 mmol) was added to **1**-¹⁵**N**₂ (0.150 g, 0.102 mmol) in C₆H₆ (3 mL), and a dark-green powder was isolated upon workup (0.129 g, 0.087 mmol, 85%). The ¹H NMR spectrum was the same as that of **2**. ³¹P{¹H} NMR (C₆D₆, 161 MHz): $\delta = 6.0$ (AX₂ triplet, ²*J*_{PN} = 7 Hz). ¹⁵N{¹H} NMR (C₆D₆, 40 MHz): $\delta = 118.2$ (AA'XX' multiplet, ²*J*_{NP} = 7 Hz, ²*J*_{NP'} = 7s Hz, ¹*J*_{NN'} = 6 Hz). EI-MS (*m*/*z*): 1322 (10, [M - 2py]⁺), 541 (100, {[NPN]*H₂ - Me}⁺).

 $\{[NPN]^*Zr(PMe_3)\}(\mu - \eta^2: \eta^2 - N_2)\{Zr[NPN]^*\} (3).$ To a solution of 1 (0.320 g, 0.221 mmol) in Et₂O (5 mL) was added PMe₃ (0.52 g, 0.60 mL, 6.9 mmol). The mixture turned clear bright green instantly. After 30 min the reaction mixture was taken to dryness to obtain a green powder (0.306 g, 0.219 mmol, 99%). A sample of 3 for microanalysis was recrystallized from toluene, with a few drops of PMe₃ added, layered with (Me₃Si)₂O (HMDSO) at -35 °C. The supernatant liquid was decanted, and the microcrystalline solid was rinsed with pentane and dried under vacuum for 5 min ¹H NMR (C₆D₆, 400 MHz): $\delta = 7.82$ (m, 4H), 7.56 (d, 2H, 8 Hz), 7.37 (d, 2H, 8 Hz), 7.27 (t, 2H, 8 Hz), 7.18 (t, 1H, 7 Hz), 7.13 (t, 1H, 7 Hz), 7.01 (t, 2H, 7 Hz), 6.94 (t, 2H, 7 Hz), 6.78 (d, 4H, 7 Hz), 6.77 (s, 2H), 6.74 (s, 2H), 6.66 (s, 2H), 6.13 (dd, 2H, $J_{\rm HH} = 8$ Hz, $J_{\rm HP} = 6$ Hz), and 5.78 (dd, 2H, $J_{\rm HH}$ = 8 Hz, $J_{\rm HP}$ = 6 Hz) (ArH), 2.31 (s, 6H), 2.23 (s, 6H), 2.17 (s, 6H), 2.11 (s, 6H), 2.00 (s, 6H), 1.92 (s, 6H), 1.68 (s, 6H), and 1.43 (s, 6H) (ArCH₃), 0.27 (d, 9H, $J_{\rm HP} = 6$ Hz, PMe₃). ³¹P{¹H} NMR (C₆D₆, 162 MHz): $\delta = 5.1$ (d, 1P, ${}^{2}J_{PP} = 44$ Hz), 2.5 (s, 1P), -33.1 (d, 1P, ${}^{2}J_{PP}$ = 44 Hz, PMe₃). ¹³C{¹H} NMR (C₆D₆, 101 MHz): δ = 162.8 (d, 29 Hz), 159.6 (d, 25 Hz), 143.0, 141.8, 137.7, 137.1, 135.8, 134.9, 134.3, 134.1, 133.9, 133.6, 133.2, 130.7, 130.0, 129.7, 129.6, 129.3, 129.0, 128.8, 128.7, 128.6, 128.5, 128.1, 127.9, 127.0, 125.7 (d, 5 Hz), 125.6, 118.0, 117.6, 114.7 (d, 9 Hz), and 113.5 (d, 11 Hz) (ArC), 21.0, 20.9, 20.5, 20.3, 19.8, 19.7, 17.7, and 16.0 (ArCH₃), 15.4 (d, 13 Hz, PMe₃). Anal. Calcd for 3-(HMDSO)_{0.67}, C₈₃H₉₉N₆P₃Zr₂Si_{1.33}O_{0.67}: C, 66.27; H, 6.63; N, 5.59. Found: C, 66.38; H, 6.90; N, 5.22.

{[**NPN**]***Zr**(**PMe**₂**Ph**)} $(\mu - \eta^2 : \eta^2 - N_2)$ {**Zr**[**NPN**]*} (4). To a stirred blue-green suspension of 1 (0.410 g, 0.280 mmol) in toluene (10 mL) was added PMe₂Ph (0.250 g, 1.81 mmol). The suspension turned bright green and was stirred at room temperature for 30 min to obtain a clear, emerald green solution. The reaction mixture was taken to dryness to obtain a green residue that was triturated and taken to dryness, first with toluene (5 mL), then with hexanes (3 × 5 mL). The deep green solids obtained were suspended in pentane (5 mL), and the mixture was chilled to -35 °C overnight. The solids were collected on a frit, rinsed with hexanes (5 mL), and dried for 1 h to obtain a bright green

powder (0.335 g, 0.229 mmol, 82%). Small crystals of 4 suitable for microanalysis were grown by slow evaporation of a benzene/HMDSO solution of the complex. Crystals of 4 suitable for X-ray analysis were grown by slow evaporation of a concentrated hexanes solution of the compound. ¹H NMR (C₆D₆, 400 MHz): $\delta = 7.79$ (t, 2H, 9 Hz), 7.74 (t, 2H, 9 Hz), 7.51 (d, 2H, 7 Hz), 7.38 (d, 2H, 8 Hz), 7.25-7.15 (m, 3H), 6.98 (m, 2H), 6.91 (t, 2H, 7 Hz), 6.79-6.65 (m, 16H), 6.12 (dd, 2H, $J_{\text{HH}} = 8$ Hz, $J_{\text{HP}} = 6.5$ Hz), and 5.77 (dd, 2H, $J_{\text{HH}} = 8$ Hz, $J_{\text{HP}} =$ 6.5 Hz) (ArH), 2.28 (s, 6H), 2.19 (s, 6H), 2.16 (s, 6H), 1.98 (s, 12H), 1.92 (s, 6H), 1.67 (s, 6H), and 1.48 (s, 6H) (ArCH₃), 0.80 (d, 6H, J_{HP} = 6 Hz). ³¹P{¹H} NMR (C₆D₆, 162 MHz): δ = 7.3 (d, 1P, ²J_{PP} = 46 Hz), 1.9 (s, 1P), -22.5 (d, 1P, ${}^{2}J_{PP} = 46$ Hz, PMe₂Ph). ${}^{13}C{}^{1}H$ NMR $(C_6D_6, 101 \text{ MHz}): \delta = 162.9 \text{ (d, 31 Hz)}, 159.4 \text{ (d, 26 Hz)}, 141.4,$ 137.8, 137.5 (d, 4 Hz), 136.1, 135.4, 135.0, 134.7, 134.3, 134.2, 133.9, 133.7, 133.6, 133.5, 133.4, 133.3, 131.7, 131.4, 131.3, 130.8 (d, 8 Hz), 129.7 (d, Hz), 129.2, 129.0, 128.7 (d, 3 Hz), 128.6 (d, 3 Hz), 127.9, 127.4 (d, 7.5 Hz), 127.1 (d, 5 Hz), 125.8 (d, 5 Hz), 118.1, 117.8, 117.6, 117.2, 114.5 (d, 9 Hz), and 113.6 (d, 11 Hz) (ArC), 21.1, 21.0, 20.5, 20.3, 19.5, 19.1, 17.9, and 16.1 (ArCH₃), 15.6 (d, 13 Hz, PPh(CH₃)₂). EI-MS (m/z): 1320 (8, [M - PMe₂Ph]⁺), 541 (100, [[NPN]*H₂ -Me]⁺). Anal. Calcd for $4 \cdot (C_6H_6)(HMDSO)_{1.5}, C_{99}H_{122}N_6O_{1.5}Si_3P_3Zr_2$: C, 66.81; H, 6.91; N, 4.72. Found: C, 67.21; H, 6.86; N, 4.35. UVvis (toluene) $\lambda_{\text{max}}(\epsilon) = 363 (1.1 \times 10^4), 699 (9.7 \times 10^3) \text{ nm (L mol^{-1})}$ cm^{-1}).

{[**NPN**]***Zr**(**PPhMe**₂)}(μ - η ²: η ²·1⁵**N**₂){**Zr**[**NPN**]*} (4-¹⁵**N**₂). Complex 4-¹⁵**N**₂ (74 mg, 51 μ mol, 97%) was prepared in an analogous fashion to 4 from 1-¹⁵**N**₂ (77 mg, 53 μ mol) in toluene (1 mL) and PMe₂-Ph (73 mg, 53 μ mol). The ¹H NMR spectrum was identical to that observed for 4. ³¹P{¹H} NMR (toluene- d_8 , 162 MHz, 253 K): δ = 7.3 (ddd, 1P, ² J_{PP} = 46 Hz, ² J_{PN} = 4 Hz, ² J_{PN} = 7 Hz), 1.9 (s, 1P), -22.5 (dd, 1P, ² J_{PP} = 46 Hz, ² J_{PN} = 7 Hz). ¹⁵N{¹H} NMR (toluene- d_8 , 40 MHz, 253 K): δ = 119.0 (AA'XX' multiplet, 1N, ¹ J_{NN} = 8 Hz, ² J_{NP} = 7 Hz, ² J_{NP} = 4 Hz). 118.0 (AA'XX' multiplet, 1N, ¹ J_{NN} = 8 Hz, ² J_{NP} = 7 Hz, ² J_{NP} = 4 Hz). EI-MS (m/z): 1322 (15, [M – PMe₂Ph]⁺), 541 (100, [[NPN]*H₂ – Me]⁺).

 $\{[NPN]*Zr(PMe_3)\}(\mu-H)(\mu-NNH)\{Zr[NPN]*\}\$ (5). Complex 3 (0.400 g, 0.287 mmol) was dissolved in toluene (10 mL), and PMe₃ (0.010 g, 0.132 mmol) was added. The solution was transferred to a Teflon-sealed bomb and degassed by three freeze-pump-thaw cycles. At room temperature, the flask was filled with 1 atm of H₂ gas and sealed, and the contents of the flask were stirred vigorously for 6 weeks. Over 2-3 weeks, the bright green solution became light yellow-green, and after 5-6 weeks an orange precipitate formed. In the glovebox, the precipitate was collected on a frit, rinsed with pentane (10 mL), and dried under vacuum for 10 min to obtain a yellow-orange powder (0.224 g, 0.160 mmol, 56%). The filtrate was stored under H₂ (1 atm) in a Teflon-sealed bomb for 1 week to obtain yellow crystals that were collected on a frit and dried under vacuum (0.105 g, 0.075 mmol, 26%). Although samples of 5 decompose over days at 25 °C in a N₂-filled glovebox, at -35 °C no decomposition is observed over 1 month. At 25 °C, toluene solutions of 5 with added PMe₃ (~ 10 mg per 1 mL of toluene) can be stored for weeks without decomposition. Small yelloworange crystals were grown from toluene/HMDSO at -35 °C. The amount of cocrystallized HMDSO was consistent with the results of ¹H NMR spectroscopy performed on crystalline samples dissolved in C₆D₆. Orange single crystals suitable for X-ray analysis were grown in an NMR tube under H_2 by vapor diffusion of pentane into a $\mathrm{C}_6\mathrm{H}_6$ solution of the compound with ${\sim}10~\text{mg}~\text{PMe}_3$ added per 1 mL of benzene. ¹H NMR (C₆D₆, 400 MHz, 298 K): $\delta = 7.98$ (bt, 4H, 5 Hz), 7.45-7.25 (m, 4H), 7.14-7.00 (m, 4H), 6.91-6.68 (m, 12H), 6.07 (dd, 1H, $J_{\rm HH}$ = 8 Hz, $J_{\rm HP}$ = 6 Hz), 6.01 (dd, 1H, $J_{\rm HH}$ = 8 Hz, $J_{\rm HP}$ = 6 Hz), 5.86 (bs, 1H), 5.83 (s, 1H), 5.71 (bs, 1H), and 5.47 (bs, 1H) (ArH), 4.83 (t, 1H, ${}^{2}J_{\text{HP}} = 11$ Hz, ZrHZr), 4.78 (bs, 1H, NNH), 2.41 (s, 3H), 2.39 (s, 3H), 2.26 (s, 3H), 2.25 (s, 3H), 2.16 (s, 3H), 2.13 (s, 6H), 1.99 (s, 6H), 1.97 (s, 6H), 1.94 (s, 3H), 1.93 (s, 3H), 1.90 (s, 3H), 1.88 (s, 3H), and 1.59 (s, 3H) (ArCH₃), 0.19 (d, 9H, $J_{\rm HP}$ = 5 Hz, P(CH₃)₃). ¹H NMR (toluene-*d*₈, 500 MHz, 253 K): $\delta = 8.14$ (dd, 2H, *J*_{HH} = 8 Hz, *J*_{HP} = 8 Hz), 7.62 (d, 1H, 7 Hz), 7.48 (d, 1H, 8 Hz), 7.45 (d, 1H, 8 Hz), 7.34 (d, 1H, 9 Hz), 7.18 (m, 4H), 7.06 (m, 2H), 6.99 (m, 4H), 6.86 (d, 1H, 8.5 Hz), 6.80 (d, 1H, 8.5 Hz), 6.76 (bs, 3H), 6.72 (s, 1H), 6.67 (s, 2H), 6.57 (d, 2H, 8 Hz), 6.16 (dd, 1H, *J*_{HH} = 8 Hz, *J*_{HP} = 6 Hz), 5.94 (dd, 1H, *J*_{HH} = 8 Hz, *J*_{HP} = 6 Hz), 5.94 (dd, 1H, *J*_{HH} = 8 Hz, *J*_{HP} = 6 Hz), 5.79 (dd, 1H, *J*_{HH} = 8 Hz, *J*_{HP} = 6 Hz), and 5.70 (dd, 1H, *J*_{HH} = 8 Hz, *J*_{HP} = 6 Hz) (ArH), 4.84 (t, 1H, ²*J*_{HP} = 11 Hz, ZrHZr), 4.82 (bs, 1H, NNH), 2.65 (s, 3H), 2.27 (s, 3H), 2.25 (s, 3H), 2.19 (s, 3H), 1.24 (s, 6H), 2.08 (s, 6H), 2.01 (s, 3H), 1.99 (s, 6H), 1.95 (s, 3H), 1.94 (s, 3H), 1.80 (s, 3H), 1.69 (s, 3H), and 1.64 (s, 3H) (ArCH₃), 0.09 (bs, 9H, P(CH₃)₃). ³¹P-{¹H} NMR (toluene-*d*₈, 202 MHz, 273 K): $\delta = 13.8$ (d, 1P, ²*J*_{PP} = 56.7 Hz), -2.2 (s, 1P), -34.5 (d, 1P, ²*J*_{PP} = 56.7 Hz). Anal. Calcd for **5**•(HMDSO)_{0.67}, *C*₈₃H₁₀₁N₆P₃O_{0.67}Si_{1.33}Zr₂: C, 66.19; H, 6.76; N, 5.58. Found: C, 65.98; H, 6.60; N, 5.50.

{[NPN]*Zr(PMe₃)}(µ-D)(µ-NND){Zr[NPN]*} (5-d₂). Complex 3 (0.300 g, 0.215 mmol) was dissolved in toluene (5 mL), and PMe₃ (0.010 g, 0.132 mmol) was added. The solution was transferred to a Teflon-sealed bomb and was degassed by three freeze-pump-thaw cycles. D2 gas was added to the flask at 25 °C. The solution was stirred vigorously for 4 weeks to obtain a deep green solution with a small amount of a yellow-green precipitate. The flask was then refilled with D_2 at 77 K and allowed to warm to 25 $^{\circ}\text{C}$ (4 atm D_2 pressure) behind a blast shield. After the solution had been stirred vigorously for 4 weeks, the reaction mixture was a dark-orange suspension. The pressure was vented, and the reaction mixture was taken to dryness to obtain a darkorange solid. The solid was triturated with hexanes to obtain an orange powder that was collected on a frit, washed with pentane $(3 \times 5 \text{ mL})$, and dried under vacuum (0.185 g, 0.132 mmol, 61%). A 10:1 mixture of 5- d_2 and 5 was obtained. The ³¹P{¹H} NMR spectrum was identical to that of 5. ¹H NMR (toluene- d_8 , 400 MHz, 253 K): δ = same as for 5 except the resonances at δ 4.84 and 4.82 integrate to 0.1H each rather than 1H relative to one of the ArCH₃ resonances. EI-MS (m/z): 1396 $(1, [M]^+), 541 (100, [[NPN]*H_2 - Me]^+).$

{[NPN]*Zr(PMe₂Ph)}(µ-H)(µ-NNH){Zr[NPN]*} (6). Complex 4 (0.380 g, 0.261 mmol) and PMe₂Ph (0.010 g, 0.073 mmol) were dissolved in toluene (7 mL). The bright green solution was transferred to a Teflon-sealed bomb and degassed by three freeze-pump-thaw cycles. At room temperature the flask was filled with 1 atm of H_2 gas, the bomb was sealed, and the reaction mixture was stirred vigorously for 6 weeks. Over several weeks, the bright green solution gradually became light yellow-green and an orange precipitate formed. In the glovebox, the reaction mixture was taken to dryness, and pentane (10 mL) was added to obtain a yellow suspension that was chilled to -35°C. The yellow solid was collected on a frit and dried (0.275 g, 0.188 mmol, 72%). Small yellow crystals were grown from toluene/HMDSO at -35 °C, and the amount of cocrystallized HMDSO was confirmed by ¹H NMR spectroscopy of samples of the crystals dissolved in C₆D₆. ¹H NMR (toluene- d_8 , 400 MHz, 233 K): $\delta = 7.99$ (t, 2H, 8 Hz), 7.80 (t, 1H, 8 Hz), 7.49 (d, 1H, 7.5 Hz), 7.41 (d, 1H, 7.5 Hz), 7.32 (d, 1H, 7.5 Hz), 7.27 (d, 1H, 7.5 Hz), 7.09 (m, 2H), 7.05 (s, 1H), 6.97 (s, 2H), 6.89 (s, 2H), 6.81 (s, 1H), 6.64 (m, 10H), 6.54 (s, 1H), 6.49 (s, 1H), 6.36 (bm, 2H), 6.07 (dd, 2H, $J_{\rm HH} = 8$ Hz, $J_{\rm HP} = 6$ Hz), 5.89 (m, 2H), 5.70 (t, 1H, 7 Hz), 5.48 (t, 1H, 7 Hz) (ArH), 4.94 (s, 1H, NNH), 4.88 (bs, 1H, ZrHZr), 2.64 (s, 3H), 2.25 (s, 3H), 2.02 (s, 6H), 2.00 (s, 9H), 1.95 (s, 3H), 1.92 (s, 3H), 1.89 (s, 3H), 1.87 (s, 3H), 1.84 (s, 6H), 1.79 (s, 3H), 1.59 (s, 3H), 1.55 (s, 3H) (ArCH₃), 0.53 (bs, 3H), and 0.33 (bs, 3H) (P(CH₃)₂Ph). ${}^{31}P{}^{1}H$ NMR (toluene- d_8 , 162 MHz, 253 K): $\delta = 14.6$ (d, ${}^{2}J_{PP} = 57.4$ Hz, 1P), -2.3 (s, 1P), -24.6 (bs, 1P). Anal. Calcd for 6 (HMDSO)_{0.33}, C₈₆H₉₇N₆P₃O_{0.33}Si_{0.67}Zr₂: C, 68.22; H, 6.46; N, 5.55. Found: C, 68.48; H, 6.62; N, 5.90.

{[**NPN**]***Zr**(**PMe**₂**Ph**)}(μ -**H**)(μ -¹⁵**N**¹⁵**NH**){**Zr**[**NPN**]*}(6-¹⁵**N**₂). Complex 6-¹⁵**N**₂ (0.163 g, 0.112 mmol, 82%) was prepared in an analogous manner to 6 from 4-¹⁵**N**₂ (0.200 g, 0.137 mmol), PMe₂Ph (0.010 g, 0.073 mmol), and H₂ in toluene (5 mL). ¹H NMR spectrum (toluene- d_8 , 400 MHz, 233 K) is the same as that of 6, but the resonance at δ

4.94 is a doublet (1H, ${}^{1}J_{\text{HN}} = 72$ Hz), and the resonance at δ 4.88 is a broad triplet (1H, ${}^{2}J_{HP} = 9.8$ Hz). ${}^{1}H{}^{31}P{}$ NMR (toluene- d_{8} , 400 MHz, 233 K): δ = 7.99 (d, 2H, 7 Hz), 7.80 (d, 1H, 7.5 Hz), 7.49 (s, 1H), 7.41 (s, 1H), 7.32 (s, 1H), 7.27 (s, 1H), 7.09 (m, 2H), 7.05 (s, 1H), 6.97 (s, 2H), 6.89 (s, 2H), 6.81 (s, 1H), 6.64 (m, 10H), 6.54 (s, 1H), 6.49 (s, 1H), 6.36 (bm, 2H), 6.06 (d, 2H, 8 Hz), 5.89 (d, 2H, 8 Hz), 5.70 (d, 1H, 7 Hz), and 5.48 (d, 1H, 7 Hz) (ArH), 4.94 (d, 1H, $J_{\rm HN} = 72$ Hz, NNH), 4.88 (bs, 1H, ZrHZr), 2.64 (s, 3H), 2.25 (s, 3H), 2.02 (s, 6H), 2.00 (s, 9H), 1.95 (s, 3H), 1.92 (s, 3H), 1.89 (s, 3H), 1.87 (s, 3H), 1.84 (s, 6H), 1.79 (s, 3H), 1.59 (s, 3H), and 1.55 (s, 3H) (ArCH₃), 0.53 (bs, 3H, P(CH₃)₂Ph), 0.33 (bs, 3H, P(CH₃)₂Ph). ³¹P-{¹H} NMR (toluene- d_8 , 162 MHz, 253 K): $\delta = 14.6$ (d, 1P, ${}^2J_{PP} =$ 57.4 Hz), -2.3 (s, 1P), -24.6 (bd, 1P, ${}^{2}J_{PP} = 51.5$ Hz). ${}^{15}N{}^{1}H}$ NMR (toluene- d_8 , 40 MHz, 298 K): $\delta = 143.9$ (s), 29.8 (d, ${}^2J_{\rm NP} = 10$ Hz). EI-MS (m/z): 1320 (12, [M - PMe₂Ph]⁺), 541 (100, [[NPN]*H₂ - Mel^+).

Reaction of 1 with H₂. A solution of **1** (0.365 g, 0.249 mmol) in toluene (10 mL) in a thick-walled Teflon-sealed bomb was degassed by three freeze-pump-thaw cycles. At 77 K the flask was filled with H₂. The solution was warmed slowly to 25 °C behind a blast shield. The deep green solution was stirred for 6 weeks. No change was observed visually or detected by ³¹P{¹H} NMR spectroscopy.

Reaction of 2 with H₂. A solution of **2** (0.430 g, 0.291 mmol) in toluene (15 mL) was transferred to a thick-walled Teflon-sealed bomb and degassed by three freeze-pump-thaw cycles. At 77 K, the flask was filled with H₂ gas and allowed to warm slowly to 25 °C behind a blast shield. The solution was stirred vigorously for 8 weeks, and a gradual green to yellow color change was observed. The pressure was vented, and the yellow reaction mixture was taken to dryness to obtain a yellow hexanes-soluble solid. ³¹P{¹H} NMR (C₆D₆, 121 MHz): $\delta = -7.6$ (s), -8.0 (s), -21.3 (s), -31.4 (s).

X-ray Crystal Structure Analyses. Selected crystals were coated in oil, mounted on a glass fiber, and placed under a N2 stream. Measurements for compounds were made on a Bruker X8 Apex diffractometer with graphite-monochromated Mo K α radiation (λ = 0.71073 Å). The data were collected at a temperature of -100 ± 1 °C. Data were collected and integrated using the Bruker SAINT software package.²⁹ Data were corrected for absorption effects using the multiscan technique (SADABS)³⁰ and for Lorentz and polarization effects. Neutral atom scattering factors were taken from Cromer and Waber.³¹ Anomalous dispersion effects were included in F_{calc} ;³² the values for $\Delta f''$ and $\Delta f'''$ were those of Creagh and McAuley.³³ The values for the mass attenuation coefficients are those of Creagh and Hubbell.³⁴ All refinements were performed using the SHELXTL crystallographic software package of Bruker-AXS. The structure was solved by direct methods. All non-hydrogen atoms were refined anisotropically using SHELXL-97. Except where noted, hydrogen atoms were included in fixed positions. Structures were solved and refined using the WinGX software package version 1.64.05. In the asymmetric unit of 1, solvent that could be modeled as $C_6H_6 + THF$ + $0.67(C_6H_{14})$ appear. Residual electron density consistent with additional disordered solvent was also evident but could not be modeled successfully. Similarly, in the asymmetric units of 2 and 4 residual electron density consistent with disordered solvent was evident; however, no reasonable model could be established. For all three

- (30) *SADABS*, V2.05; Bruker Nonius area detector scaling and absorption correction; Bruker AXS Inc.: Madison, WI.
- (31) Cromer, D. T.; Waber, J. T. International Tables for X-ray Crystallography; The Kynoch Press: Birmingham, England, 1974; Vol. IV, Table 2.2 A.
 (32) Ibers, J. A.; Hamilton, W. C. Acta Crystallogr. 1964, 17, 781.
- (32) Creag, D. C.; McAuley, W. J. International Tables for Crystallography;
 Wilson, A. J. C., Ed.; Kluwer Academic Publishers: Boston, 1992; Vol. C, Table 4.2.6.8, pp 219–222.
- (34) Creagh, D. C.; Hubbell, J. H. International Tables for Crystallography; Wilson, A. J. C., Ed.; Kluwer Academic Publishers: Boston, 1992; Vol. C, Table 4.2.4.3, pp 200–206.
- (35) Van der Sluys, P.; Spek, A. L. Acta Crystallogr. 1990, A46, 40.

⁽²⁹⁾ SAINT, version 6.02; Bruker AXS Inc.: Madison, WI, 1999.

structures, the program SQUEEZE³⁵ was used to generate a data set that corrects for the scattering contribution from this disordered solvent.

Acknowledgment. We thank NSERC of Canada and the Izaak Walton Killam Foundation (Fellowship to M.D.F.) for funding.

Supporting Information Available: UV-vis spectra for the dinitrogen complexes **1**, **2**, and **4**; X-ray crystal structure data (Table S1 and CIF files); ³¹P NMR spectrum of complex **3**; low-resolution X-ray structure of **5**. This material is available free of charge via the Internet at http://pubs.acs.org. JA073753V